Integrated assessment of water flows and urban water networks in smart parks.
Application to the service sector

Anna Petit-Boix, Sidnei Pereira Silva, Aldo Ometto, Frederico Yuri Hanai, Ademir Barbassa, Alejandro Josa, Xavier Gabarrell, Joan Rieradevall

ISIE Conference 2015. Taking Stock of Industrial Ecology

7-10th July 2015 - Surrey, Guildford, UK
1. Introduction to Smart Parks

2. Objectives

3. Methods
 3.1 Case study selection
 3.2 General features of the retail park
 3.3 Scenario proposal
 3.4 Methodological approach

4. Results and discussion
 4.1 Tank sizing
 4.2 Environmental performance

5. Conclusions
The service sector represents 70% of the world’s GDP*

Savills and TW Research Associates, 2004 The Definitive Guide to Retail and Leisure Parks
Trevor Wood Associates, 5 Penn Road, Hazlemere, High Wycombe, Bucks HP15 7LN
A sustainable management of these areas is required, especially when their dimensions become larger and more services are offered.
A sustainable management of these areas is required, especially when their dimensions become larger and more services are offered.

Need to integrate the concept of smart park

Kazemersky and Winters (1999): “an innovative model designed to integrate the inflows and outflows of energy, water and waste streams for multiple businesses in a sustainable and synergistic manner”

Inputs
- Energy
- Food
- Water
- Products
- Transport

Outputs
- Emissions
- Products
- Transport

Kazemersky, P. and Winters, K. 1999 Chattanooga SMART. Park Education of Graduate Students Through the Use of Real World Projects. ASEE Southeast Sect. Conf., US.
AIM: To environmentally assess water self-sufficiency in retail parks from the perspective of smart parks.

SPECIFIC OBJECTIVES:

- To propose rainwater harvesting (RWH) scenarios in individual and collective systems and analyse the RWH potential
- To assess the environmental impacts of these scenarios in a case study area using LCA
- To determine the net environmental impacts of implementing RWH instead of business as usual (BAU)
Methods

Case study selection

Sant Boi de Llobregat

Climate: Mediterranean
Population: 82,000 inhabitants
Average precipitation: 650 mm/year

El Baix Llobregat, located in the Metropolitan Area of Barcelona
General features of the retail park

- 36,260 m² – Food, clothes and others
- 2,300 m² – Clothes
- 10,065 m² – Furniture, gardening, DIY
- 4,200 m² – Toys
- 2,800 m² – Electronics
- 4,760 m² – Sports
- 410 m² – Fast Food
- 400 m² – Fast Food
- 1,240 m² – Car maintenance

Water consumption: 98 m³/day
Customers: 12,323/day
Other impervious areas: 150,000 m²
Building type: one storey
Methods

Scenario proposal

Scenario 0

BAU – Potable water coming from a plant located 3.5 km away

Scenario 1

Individual approach

Company-based rainwater harvesting
Methods

Scenario proposal

Scenario 2
Collective approach

Single-tank rainwater harvesting

- Rainwater tank
- Rainwater collection
- Rainwater consumption
Methods

Methodological approach

1. **Tank sizing**

Modelling of buildings with large catchment areas

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>system demand</td>
<td>m³ · day</td>
</tr>
<tr>
<td>% drinking water demand</td>
<td>%</td>
</tr>
<tr>
<td>users · day</td>
<td>adim.</td>
</tr>
<tr>
<td>roof catchment area</td>
<td>m²</td>
</tr>
<tr>
<td>soil catchment area</td>
<td>m²</td>
</tr>
<tr>
<td>rain water (roof) tank volume</td>
<td>m³</td>
</tr>
<tr>
<td>grey water tank volume</td>
<td>m³</td>
</tr>
<tr>
<td>roof runoff coefficient</td>
<td>adim.</td>
</tr>
<tr>
<td>filter efficiency coefficient</td>
<td>adim.</td>
</tr>
<tr>
<td>soil runoff coefficient</td>
<td>adim.</td>
</tr>
</tbody>
</table>

Methodological approach

1. **Tank sizing**
 - Modelling of large surfaces according to water demand, roof and soil area, etc.

2. **Life cycle impacts**
 - TANKS and DISTRIBUTION NETWORK
 - Structurally optimized superficial concrete tanks
 - HDPE pipes with a diameter of 90 mm

System boundaries:

- **Raw material extraction**
- **Pipe production**
- **Transport**
- **On-site installation**
- **Operation**
- **End of life**

FU: 1 m³ of water demand covered by RWH

BAU → Potable water treatment plant
- 1.26·10⁸ m³ treated/year
- 3.5 km of HDPE pipes with a diameter of 90 mm

System boundaries:
For each scenario, Plugrisost® was run using a 20-year precipitation series.

Modelling stopped when an increase in the tank size did not entail a relevant increase in the rainwater harvested.

The selection ensured an average demand coverage of >85% and up to 100%.

The collective approach enabled the collection of only 1% more rainwater than the individual scenario.
Results

Life cycle impacts

Gross environmental impact

40-60%

CML 2001 & Cumulative Energy Demand
ecoinvent v2
Results

Life cycle impacts

Gross environmental impact

40-60%

750 m³ subdivided into 8 different tanks are not efficient in harvesting rainwater → the cost is larger

Breakdown of Scenario 1

The largest tank (1000 m³) provides 60% of the park’s water and accounts for 40% of the total impacts
Results

2 Life cycle impacts

Net environmental impact (NEI)

IMPLEMENTATION BURDENS:
Environmental impact of RWH

AVOITED BURDENS:
Environmental impact of treating and transporting the demand covered by RWH

Other impact categories:
2-20% impact reduction

Ozone Layer Depletion

![Graph showing Ozone Layer Depletion with scenarios and impact reductions.](image)

- Most remarkable changes in ozone depletion
- Reduced chlorination requirements
Conclusions

An integrated water management of a retail park from a smart park perspective might have different benefits:

• It provides water self-sufficiency in water stressed areas

• It promotes synergies among independent companies: collective rainwater harvesting can represent up to 60% fewer impacts than individual tanks

• A collective approach reduces the material and energy requirements and environmental burdens of an expanded system: there are avoided impacts related to potable water treatment plants (50% of ODP reduction in the best scenario)

• It is a first step towards integrating other synergies such as green energy production, local food, etc.
Integrated assessment of water flows and urban water networks in smart parks.
Application to the service sector

Anna Petit-Boix, Sidnei Pereira Silva, Aldo Ometto, Frederico Yuri Hanai, Ademir Barbassa, Alejandro Josa, Xavier Gabarrell, Joan Rieradevall

ISIE Conference 2015. Taking Stock of Industrial Ecology

7-10th July 2015 - Surrey, Guildford, UK